Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation
نویسندگان
چکیده
Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings, Bacillus sp. IND12 was selected for fibrinolytic enzyme production. Bacillus sp. IND12 effectively used cow dung for its growth and enzyme production (687 ± 6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4 were the vital parameters with statistical significance (p < 0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed 4143 ± 12.31 U/g material, which was more than fourfold the initial enzyme production (978 ± 36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p < 0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83 ± 3.6%), egg white (100%), and bovine serum albumin (29 ± 4.9%).
منابع مشابه
Response of surface optimization for the enhanced production of alkaline protease isolated from Bacillus sp. with bean husk as a new substrate
Optimization of the fermentation medium for maximum alkaline protease production was carried out. Fifteen positive isolates were examined for their extent of alkaline protease production. The most potent producer was identified as Bacillus sp. The solid substrate screening showed that the combination of wheat straw and bean husk was the best one. The initial screening by using Plackett–Burman’s...
متن کاملEvaluation of Ca-Independent a-Amylase Production by Bacillus sp. KR-8104 in Submerged and Solid State Fermentation Systems
This study investigates the production of crude Ca-independent and low pH active α-amylase by Bacillussp. KR-8104 in submerged fermentation (SmF) and solid-state fermentation (SSF) systems. Differentparameters were evaluated in each system using “one factor at a time” approach to improve the production ofenzyme. The results showed that in the SmF the maximum enzyme production ...
متن کاملStatistical optimization of fibrinolytic enzyme production by Pseudoalteromonas sp. IND11 using cow dung substrate by response surface methodology
Fibrinolytic enzymes are agents that dissolve fibrin clots. These fibrinolytic agents have potential use to treat cardiovascular diseases, such as heart attack and stroke. In the present article, a fibrinolytic enzyme producing Pseudoalteromonas sp. IND11 was isolated from the fish scales and optimized for enzyme production. Cow dung was used as a substrate for the production of fibrinolytic en...
متن کاملCow Dung Is a Novel Feedstock for Fibrinolytic Enzyme Production from Newly Isolated Bacillus sp. IND7 and Its Application in In Vitro Clot Lysis
Bacterial fibrinolytic enzymes find great applications to treat and prevent cardiovascular diseases. The novel fibrinolytic enzymes from food grade organisms are useful for thrombolytic therapy. This study reports fibrinolytic enzyme production by Bacillus sp. IND7 in solid-state fermentation (SSF). In this study, cow dung was used as the cheap substrate for the production of fibrinolytic enzym...
متن کاملLipase Production in Solid State Fermentation Using Aspergillus niger: Response Surface Methodology
Among enzymes, lipases have been widely investigated because of the numerous industrial applications. In this study, optimization of lipase production by Aspergillus niger in solid state fermentation from rice bran as solid substrate was investigated. The optimal conditions with the aid of central composite design (CCD) under response surface methodology (RSM) were obtained. In the analysis of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017